
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Wed May 23 10:48:38 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 09445223 Version No: 3.0

Input Set:

Output Set:

Started: 2007-05-22 15:27:11.694 **Finished:** 2007-05-22 15:27:11.950

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 256 ms

Total Warnings: 3

Total Errors: 0

No. of SeqIDs Defined: 5

Actual SeqID Count: 5

Err	or code	Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	IInknown	found	in	<213>	in	SEO	TD	(5)

SEQUENCE LISTING

```
<110> WALLACH, David
     BOLDIN, Mark
      MALININ, Nikolai
<120> MODULATORS OF INTRACELLULAR INFLAMMATION, CELL DEATH AND CELL
     SURVIVAL PATHWAYS
<130> WALLACH=24
<140> 09445223
<141> 1999-12-06
<150> 09/445,223
<151> 1999-12-06
<150> IL 121011
<151> 1997-06-05
<150> IL 121199
<151> 1997-06-30
<150> IL 121746
<151> 1997-09-11
<150> PCT/IL98/00255
<151> 1998-06-01
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 540
<212> PRT
<213> Homo sapiens
<400> 1
Met Asn Gly Glu Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr His
             5
                               10
                                                15
Lys Leu Ala Asp Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly Thr Val
        20 25 30
Ser Ser Ala Arg His Ala Asp Trp Arg Val Gln Val Ala Val Lys His
      35
                       40
                                          45
Leu His Ile His Thr Pro Leu Leu Asp Ser Glu Arg Lys Asp Val Leu
   50
               55 60
```

Arg Glu Ala Glu Ile Leu His Lys Ala Arg Phe Ser Tyr Ile Phe Pro

Ile Leu Gly Ile Cys Asn Glu Pro Glu Phe Leu Gly Ile Val Thr Glu 85 90 95

65

Tyr Met Pro Asn Gly Ser Leu Asn Glu Leu Leu His Arg Lys Thr Glu
100 105 110

Tyr Pro Asp Val Ala Trp Pro Leu Arg Phe Arg Ile Leu His Glu Ile 115 120 125

Ala Leu Gly Val Asn Tyr Leu His Asn Met Thr Pro Pro Leu Leu His 130 135 140

Lys Ile Ala Asp Phe Gly Leu Ser Lys Trp Arg Met Met Ser Leu Ser 165 170 175

Gln Ser Arg Ser Ser Lys Ser Ala Pro Glu Gly Gly Thr Ile Ile Tyr 180 185 190

Met Pro Pro Glu Asn Tyr Glu Pro Gly Gln Lys Ser Arg Ala Ser Ile 195 200 205

Lys His Asp Ile Tyr Ser Tyr Ala Val Ile Thr Trp Glu Val Leu Ser 210 215 220

Arg Lys Gln Pro Phe Glu Asp Val Thr Asn Pro Leu Gln Ile Met Tyr 225 230 235 235

Ser Val Ser Gln Gly His Arg Pro Val Ile Asn Glu Glu Ser Leu Pro 245 250 255

Tyr Asp Ile Pro His Arg Ala Arg Met Ile Ser Leu Ile Glu Ser Gly \$260\$ \$265\$ \$270\$

Trp Ala Gln Asn Pro Asp Glu Arg Pro Ser Phe Leu Lys Cys Leu Ile 275 280 285

Glu Leu Glu Pro Val Leu Arg Thr Phe Glu Glu Ile Thr Phe Leu Glu 290 295 300

Ala Val I 305	le Gln I	Leu Lys 310	Lys	Thr	Lys	Leu	Gln 315	Ser	Val	Ser	Ser	Ala 320
Ile His L	-	Asp Lys 325	Lys	Lys	Met	Glu 330	Leu	Ser	Leu	Asn	Ile 335	Pro
Val Asn H	His Gly I 340	Pro Gln	Glu	Glu	Ser 345	Cys	Gly	Ser	Ser	Gln 350	Leu	His
Glu Asn S	Ser Gly : 355	Ser Pro	Glu	Thr 360	Ser	Arg	Ser	Leu	Pro 365	Ala	Pro	Gln
Asp Asn A	Asp Phe I	Leu Ser	Arg 375	Lys	Ala	Gln	Asp	Cys 380	Tyr	Phe	Met	Lys
Leu His H 385	lis Cys I	Pro Gly 390	Asn	His	Ser	Trp	Asp 395	Ser	Thr	Ile	Ser	Gly 400
Ser Gln A	_	Ala Phe 405	Cys	Asp	His	Lys 410	Thr	Thr	Pro	Cys	Ser 415	Ser
Ala Ile I	lle Asn I 420	Pro Leu	Ser	Thr	Ala 425	Gly	Asn	Ser	Glu	Arg 430	Leu	Gln
Pro Gly I	le Ala (Gln Gln	_	Ile 440	Gln	Ser	Lys	Arg	Glu 445	Asp	Ile	Val
Asn Gln M 450	Met Thr (Glu Ala	Cys 455	Leu	Asn	Gln	Ser	Leu 460	Asp	Ala	Leu	Leu
Ser Arg A 465	Asp Leu I	Ile Met 470	Lys	Glu	Asp	Tyr	Glu 475	Leu	Val	Ser	Thr	Lys 480
Pro Thr A	-	Ser Lys 485	Val	Arg	Gln	Leu 490	Leu	Asp	Thr	Thr	Asp 495	Ile
Gln Gly G	Glu Glu I 500	Phe Ala	Lys	Val	Ile 505	Val	Gln	Lys	Leu	Lys 510	Asp	Asn
Lys Gln M 5	Met Gly 1	Leu Gln	Pro	Tyr 520	Pro	Glu	Ile	Leu	Val 525	Val	Ser	Arg

<210> 2

<211> 2098

<212> DNA

<213> Homo sapiens

<400> 2

<400 <i>></i> 2						
ggccattatg	gatggatggg	cggcgctacg	gcgttggcac	cagtctctag	aaaagaagtc	60
agctctggtt	cggagaagca	gcggctggcg	tgggccatcc	ggggaatggg	cgccctcgtg	120
acctagtgtt	gcggggcaaa	aagggtcttg	ccggcctcgc	tcgtgcaggg	gcgtatctgg	180
gcgcctgagc	gcggcgtggg	agccttggga	gccgccgcag	cagggggcac	acccggaacc	240
ggcctgagcg	cccgggacca	tgaacgggga	ggccatctgc	agegeeetge	ccaccattcc	300
ctaccacaaa	ctcgccgacc	tgcgctacct	gagccgcggc	gcctctggca	ctgtgtcgtc	360
cgcccgccac	gcagactggc	gcgtccaggt	ggccgtgaag	cacctgcaca	tccacactcc	420
gctgctcgac	agtgaaagaa	aggatgtttt	aagagaagct	gaaattttac	acaaagctag	480
atttagttac	atttttccaa	ttttgggaat	ttgcaatgag	cctgaatttt	tgggaatagt	540
tactgaatac	atgccaaatg	gatcattaaa	tgaactccta	cataggaaaa	ctgaatatcc	600
tgatgttgct	tggccattga	gatttcgcat	cctgcatgaa	attgcccttg	gtgtaaatta	660
cctgcacaat	atgactcctc	ctttacttca	tcatgacttg	aagactcaga	atatcttatt	720
ggacaatgaa	tttcatgtta	agattgcaga	ttttggttta	tcaaagtggc	gcatgatgtc	780
cctctcacag	tcacgaagta	gcaaatctgc	accagaagga	gggacaatta	tttatatgcc	840
acctgaaaac	tatgaacctg	gacaaaaatc	aagggccagt	atcaagcacg	atatatatag	900
ctatgcagtt	atcacatggg	aagtgttatc	cagaaaacag	ccttttgaag	atgtcaccaa	960
tcctttgcag	ataatgtata	gtgtgtcaca	aggacatcga	cctgttatta	atgaagaaag	1020
tttgccatat	gatatacctc	accgagcacg	tatgatctct	ctaatagaaa	gtggatgggc	1080
acaaaatcca	gatgaaagac	catctttctt	aaaatgttta	atagaacttg	aaccagtttt	1140
gagaacattt	gaagagataa	cttttcttga	agctgttatt	cagctaaaga	aaacaaagtt	1200
acagagtgtt	tcaagtgcca	ttcacctatg	tgacaagaag	aaaatggaat	tatctctgaa	1260
catacctgta	aatcatggtc	cacaagagga	atcatgtgga	tcctctcagc	tccatgaaaa	1320
tagtggttct	cctgaaactt	caaggtccct	gccagctcct	caagacaatg	attttttatc	1380

```
tagaaaagct caagactgtt attttatgaa gctgcatcac tgtcctggaa atcacagttg
                                                                1440
ggatagcacc atttctggat ctcaaagggc tgcattctgt gatcacaaga ccactccatg
                                                                1500
ctcttcagca ataataaatc cactctcaac tgcaggaaac tcagaacgtc tgcagcctgg
                                                                1560
tatagcccag cagtggatcc agagcaaaag ggaagacatt gtgaaccaaa tgacagaagc
                                                                1620
ctgccttaac cagtcgctag atgcccttct gtccagggac ttgatcatga aagaggacta
                                                                1680
                                                                1740
tgaacttgtt agtaccaagc ctacaaggac ctcaaaagtc agacaattac tagacactac
tgacatccaa ggagaagaat ttgccaaagt tatagtacaa aaattgaaag ataacaaaca
                                                                1800
aatqqqtctt caqccttacc cqqaaatact tqtqqtttct aqatcaccat ctttaaattt
                                                                1860
acttcaaaat aaaagcatgt aagtgactgt ttttcaagaa gaaatgtgtt tcataaaagg
                                                                1920
atatttatat ctctgttgct ttgacttttt ttatataaaa tccgtgagta ttaaagcttw
                                                                1980
awwraargkt ctttsrktaa atattagtct ccctccatga cactgcagta ttttttttaa
                                                                 2040
                                                                2098
<210> 3
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(1)
<223> Residue at postion 1 is modified by an acetyl group.
<220>
<221> misc feature
<222> (4)..(4)
<223> Residue at postion 4 is modified by
      a-(4-methyl-coumaryl-7-amide).
<220>
<221> misc_feature
<222> (4)..(4)
<223> Residue at postion 4 is modified by an AC-DEVD-AMC group.
<400> 3
Asp Glu Val Asp
```

```
<211> 30
<212> DNA
<213> Artificial
<220>
<223> synthetic
<400> 4
                                                                   30
cagaattcca gagtgtttca agtgccattc
<210> 5
<211> 30
<212> DNA
<213> Artificial
<220>
<223> synthetic
<400> 5
aactcgagac ttacatgctt ttattttgaa
                                                                   30
```